Cellulosic Fuels Development

Dr. Susan Jenkins Managing Director Energy Biosciences Institute

The Energy Bioscience Institute

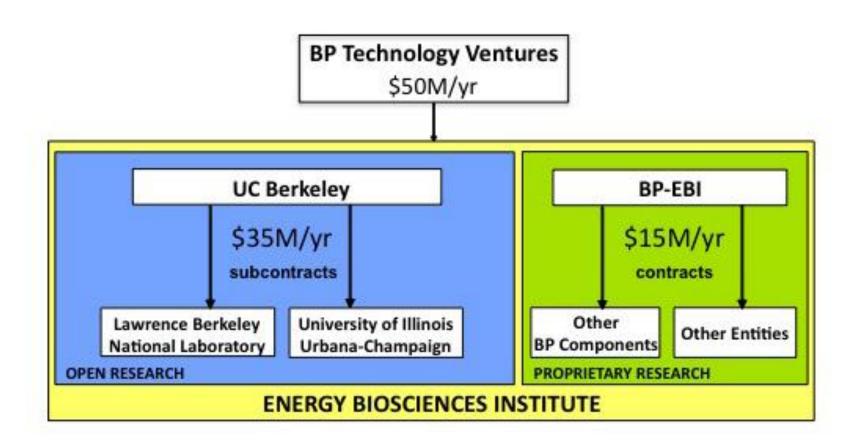
- Partnership between UCB, UIUC, LBNL, and BP
- BP committed \$500M over 10 years
- Motivations
 - Climate change mitigation
 - Security of energy supply
 - Increasing energy demands in future decades
 - Renewable Fuel Standard (Energy Independence and Security Act of 2007) – 16 billion gallons/year by 2022 from cellulosics

Mission

- Apply biological knowledge to the energy sector
- Find total system solutions to biofuels that are cost effective and sustainable
- Educate scientists and engineers across the relevant disciplines

Facilities

UC Berkeley


UI Urbana-Champaign

EBI Funding

Strategic Initiatives for Research

Lignocellulosic biofuels

- Feedstocks
- Deconstruction/Depolymerization
- Biofuels production
- Environmental, social and economic dimensions

Fossil fuel microbiology

- Microbially-enhanced hydrocarbon recovery
- Control of reservoir biosouring

Whole-system approach to biofuels

Environmental, Social & Economic Dimensions

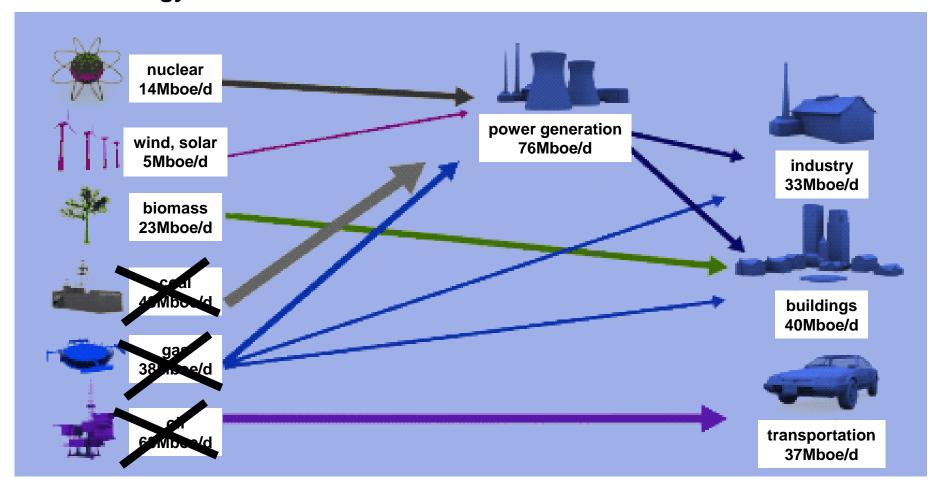
Life-cycle assessment
Land use
Markets and networks
Social impacts
Environmental issues

Biology & Chemistry

Biomass pretreatment Enzyme discovery Chemical catalysis Systems biology Pathway engineering

Core Support Services & Activities

Analytical Chemistry
Energy Farm
Research & Analysis
Lab Support
Intellectual Property
Communications
Outreach
IT

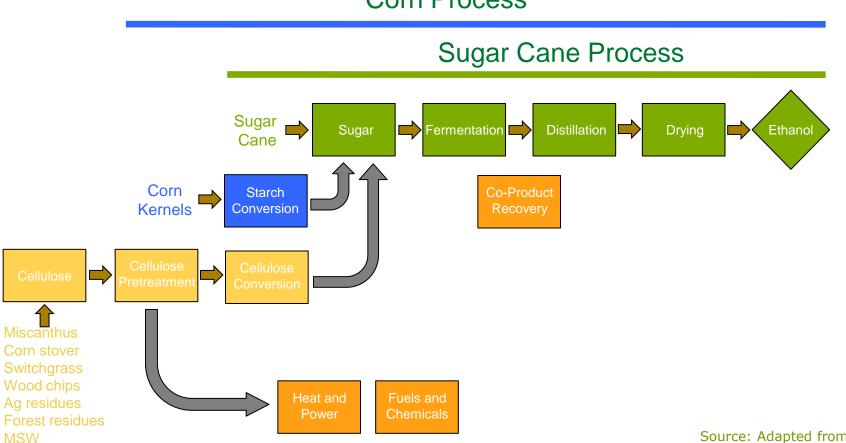

Agronomy & Agriculture

Feedstock production
Genetics & breeding
Harvest, transport, storage
Pests & pathogens
Environmental factors

Energy sources and uses

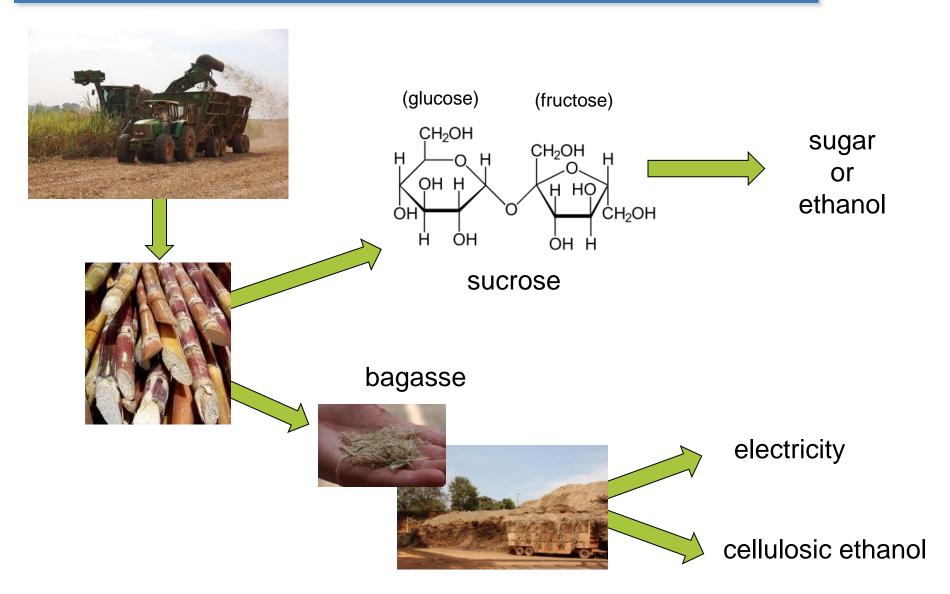
Not all energy is the same

Source: IEA WEO


Ethanol Production

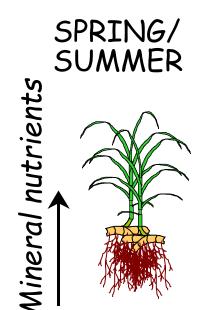
Sugar cane bagasse

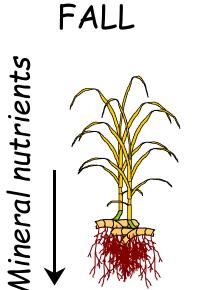
Cellulosic Process

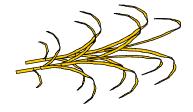

Corn Process

Source: Adapted from B. Dale

Sucrose from sugar cane




Energy Grasses - Miscanthus

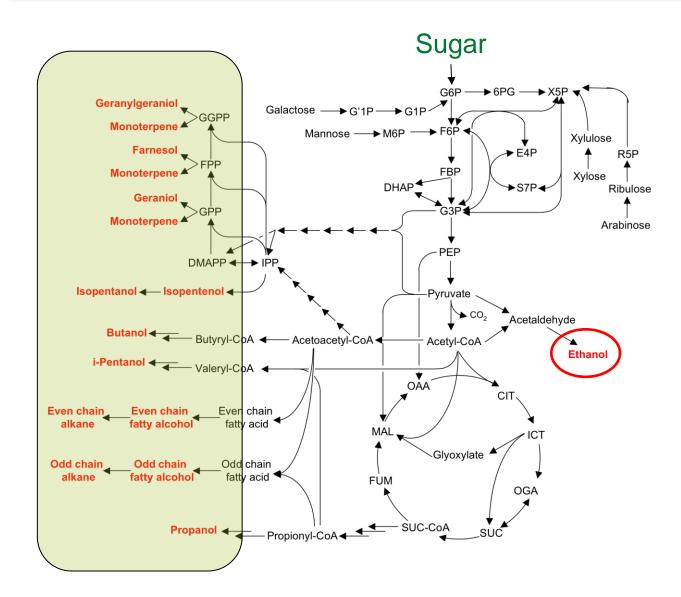


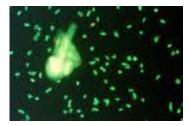
Translocation from rhizomes to growing shoot

Translocation to rhizome as shoot senesces

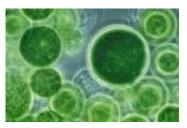
WINTER

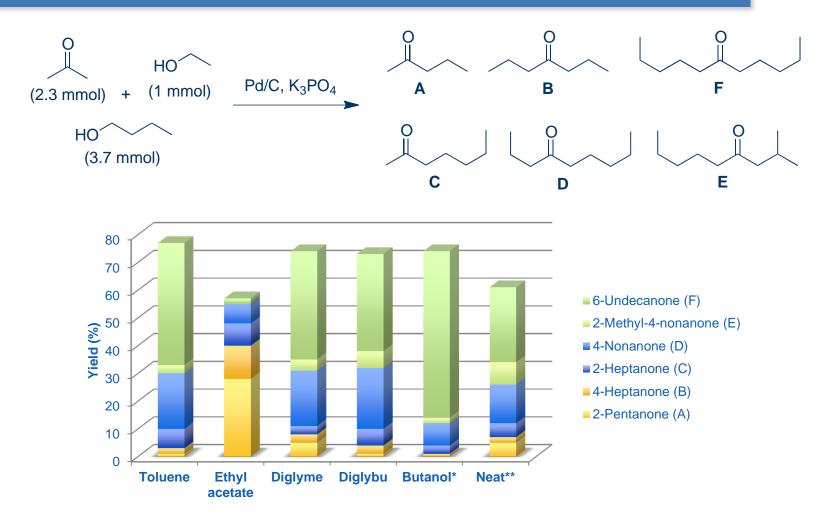
Lignocellulose dry shoots harvested, nutrients stay in rhizomes


Agave in Semi-arid Regions



Biofuel Production




ABE fermentation

Oldest fermentation processes used for the commercial production of a chemical from carbohydrates and one of the efficient methods for the production of acetone and butanol from biomass-derived carbohydrates

Combine biology and chemistry

Pd/C (0.21 mol%), K_3PO_4 (98 mol%), Solvent (1.5 mL), 145 ° C, 20 h; * 32 mol% of K_3PO_4 ; ** two fold of the original conditions with same amount of Pd/C (0.1 mol%) Yields were determined by GC.

Lessons learned...

- This is not biotechnology
 - Larger scale, lower value
- Global industry
 - Regional supply issues
 - Policies and regulations
- Investment time frames are longer than anticipated

Mandates didn't work

NEW RENEWABLE FUELS STANDARD SCHEDULE

Year	Renew- able Biofuel	Advanced Biofuel	Cellulosic Biofuel	Biomass- based Diesel	Undiffer- entiated Advanced Biofuel	Total RFS
2008	9.0					9.0
2009	10.5	.6		.5	0.1	11.1
2010	12	.95	.1	.65	0.2	12.95
2011	12.6	1.35	.25	.8	0.3	13.95
2012	13.2	2	.5	1	0.5	15.2
2013	13.8	2.75	1		1.75	16.55
2014	14.4	3.75	1.75		2	18.15
2015	15	5.5	3		2.5	20.5
2016	15	7.25	4.25		3.0	22.25
2017	15	9	5.5		3.5	24
2018	15	11	7		4.0	26
2019	15	13	8.5		4.5	28
2020	15	15	10.5		4.5	30
2021	15	18	13.5		4.5	33
2022	15	21	16		5	36

- Original LC target was
 1.75 billion gallons by
 2014
- LC estimated capacity for 2014 ~50 million gallons

Scale-up

What's the problem with scale-up?

- Efficient use of capital
- Full process integration
- Mechanical operations
- Recycle streams
- Impurities and contamination
- Stability over time
- Process robustness
- Time, money and risk

Time and Money

Time and Money

- Basic lab work: 5 M\$, 3 years
- Design build and run pilot plant: 15 M\$, 3 years
- Design build and run Demo plant: 100 M\$, 3 years
- Design build and run first commercial plant: 500 M\$, 3 years
- Many times there are re-cycles
- Linear progress takes 12 years till commercial rollout!

Conclusions

Conclusions

- Still many competing forces and pathways
- Potential for LC biofuels continues to be big
- A matter of when we will get there, not if
- Significant science and innovation still needed
- Process scale up is
 - Inherently risky
 - Time consuming
 - Expensive
 - Innovation cannot be mandated
- Business success requires scale up <u>and</u> a commercially winning proposition

LC Capacity in the US

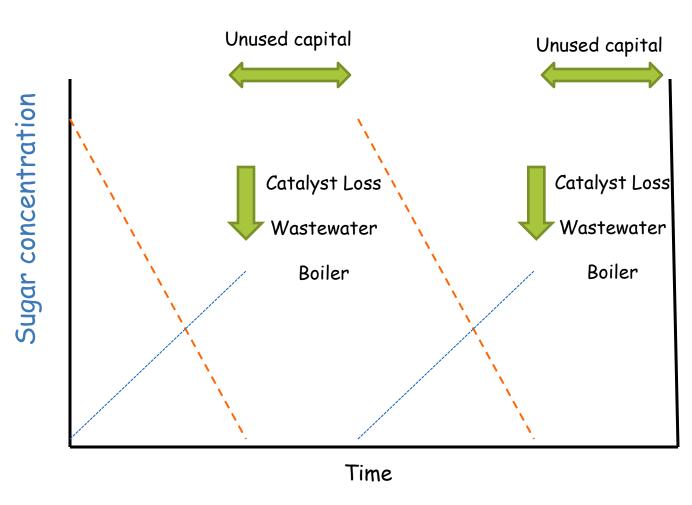
- Abengoa (Kansas)
 - Investment: \$500M
 - Capacity: 25 Mgal/year
- POET-DSM (Iowa)
 - Investment: \$250M
 - Capacity: 25 Mgal/year
- QCCP-ACE (lowa)
 - Investment: \$9M
 - Capacity: 3.75 Mgal/year

Improvements are possible

Abengoa (Hugoton, Kansas)

- using agricultural (stover) waste
- •projected price for LC EtOH \$2.00-\$2.30/gal by end of 2015
- contrast to Corn EtOH at \$2.31 and gasoline at \$2.23
- current feedstock costs:
 - corn at \$2/gal,
 - ag waste at \$0.70/gal
- current enzyme costs
 - \$1.40/gal dropping to \$0.50 by 2016 (Dyadic International)

Environmental, social and economic dimensions



- Environmental
 - GHGs, water use, land use, ecosystem impacts/services
- Societal
 - Food and fuel, employment, quality of life
- Economics
 - Micro: farmers and biorefineries (markets and networks, investments)
 - Macro: national and international levels (trade)
- Law and Policy
 - Federal and state regulations and mandates, subsidies, taxes

energybiosciencesinstitute.org

Need continuous process

Fuel accumulation