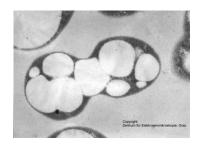


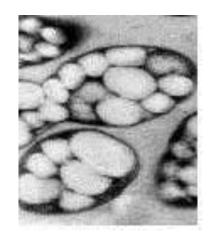
Ministerio de Ciencia, Tecnología e Innovación Productiva

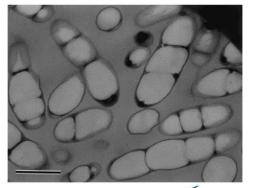
Production of biodegradable plastics from bacterial cells

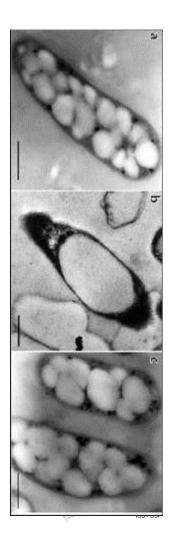
Prof^{a.} Dr^{a.} Luiziana Ferreira da Silva Laboratory of Bioproducts Institute of Biomedical Sciences University of São Paulo Brazil

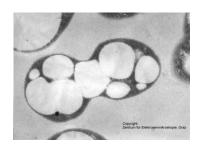
Impact of different metabolic networks

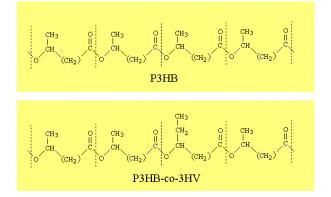

Sucrose Glucose Xylose Glycerol Fatty acids Plant oils Soybean molasses Agro industrial residues Others...

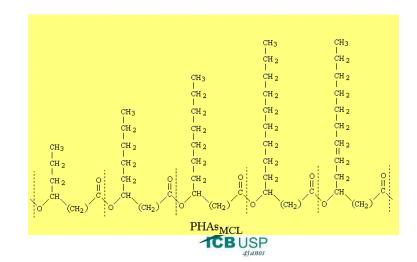

Pseudomonas sp. *B. sacchari E. coli* Platforms for... PHA – Biodegradable plastics Rhamonolipids 1,3-Propanediol Others...


Polyhydroxyalkanoate (PHA) biodegradable & biocompatible polymers accumulated by bacteria








PHA are thermoplastic materials with variable monomer composition

C4 & C5 Short-chain length monomers PHA scl

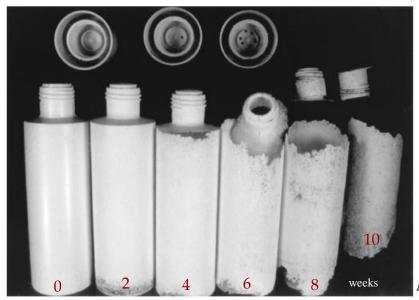
C6 & C12 Medium-chain length monomers PHA mcl

Monomer composition is responsible for PHA properties and applications

PHA Polymer	T _M (°C)	T _G (°C)	Tensile strength (MPa)	Elongation to break (%)
P(3HB)	177	4	43	5
P(3HB-co-10%HV)	150	-	25	20
P(3HB-co-20%HV)	135	-	20	100
P(3HB-co-10%HHx)	127	-1	21	400
P(3HB-co-15%HHx)	115	0	23	760
P(3HB- <i>co</i> -17%HHx)	120	-2	20	850
P(3HB- <i>co</i> -19%HHx)	111	-4	-	-
Polipropileno	170	-	34	400
Poliestireno	110	-	50	-
PET	262	-	56	730
HDPE	135	-	29	-
LDPE	130	-30	10	620

Comparison of thermal and physical properties of different polymers.

3HB: 3-hydroxyutyrate; HV: 3-hydroxyvalerate; HHx: 3-hydroxyhexanoate, PET – polyethylene tereftalate, HDPE – high density polyethylene, LDPE – low density polyethylene, T_M – melting temperature de fusão; T_G glass transition temperature. Sources: HOLMES, 1985; KING, 1982; DOI *et al.*, 1995; SUDESH *et al.*, 2000; PRADELLA, 2006; CARMINATTI *et al.*, 2006



Nonato, 2012

PHA are biodegradable materials

Madison & Huisman, 1999

PHA are biocompatible polymers

Applications

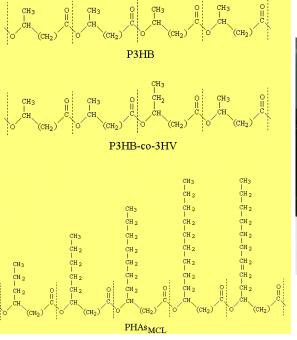
Bone tissue engineering Cartilage Tissue Engineering Drug delivery Medical device development: Biodegradable drug eluting stents Biodegradable nerve conduits

Skin Tissue Engineering/Wound Healing

Cardiac Tissue Engineering

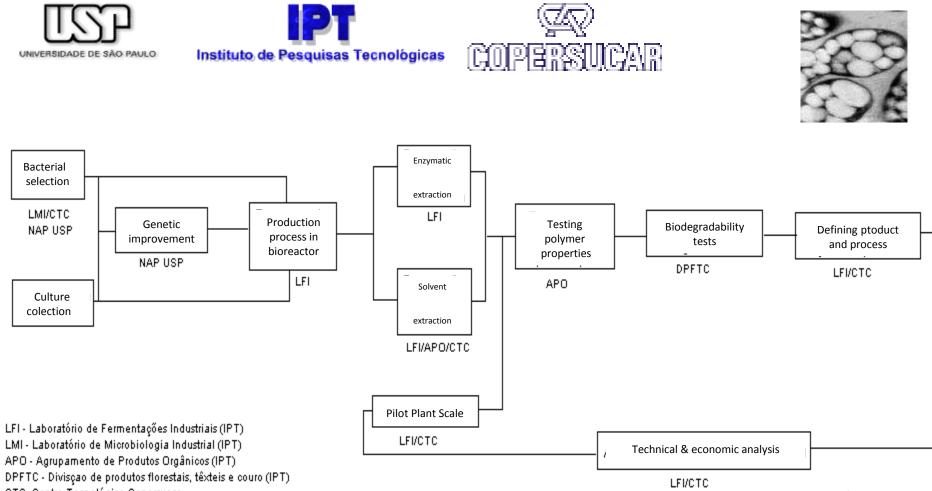
Recently reviewed @

by Dr Ipsita Roy Imperial College London Univ. Westminster



PHA production integrated to a sugar and etanol mill.

R. V. Nonato · P. E. Mantelatto · C. E. V. Rossell


Integrated production of biodegradable plastic, sugar and ethanol

Appl Microbiol Biotechnol (2001) 57:1–5 DOI 10.1007/s002530100732

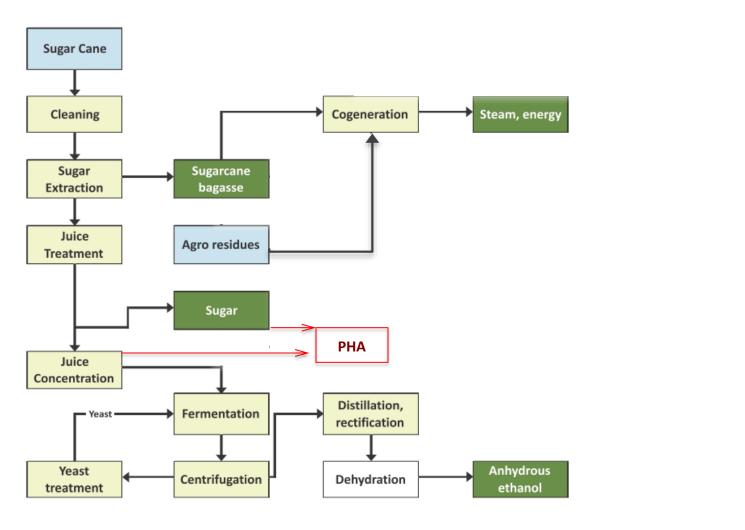
MINI-REVIEW

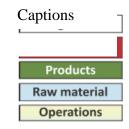
A green cycle for simultaneous poly 3-hydroxybutyric acid, sugar and ethanol production

CTC -Centro Tecnológico Copersucar

NAP - USP Instituto de Ciências Biomédicas (USP) e Universidade Federal da Paraíba

Esquema geral de projeto de pesquisa e desenvolvimento de tecnologia de produção de PHA (Gomez *et al.,* 1993)


Financiamento: PADCT/Finep, CNPq, FAPESP


Process transfer to industry

Company	Types of PHA	Production scale (t/a)	Period	Applications
ICI, UK	PHBV	300	1980s to 1990s	Packaging
Chemie Linz, Austria	PHB	20-100	1980s	Packaging & drug delivery
btF, Austria	PHB	20-100	1990s	Packaging & drug delivery
Biomers, Germany	PHB	Unknown	1990s to present	Packaging & drug delivery
BASF, Germany	PHB, PHBV	Pilot scale	1980s to 2005	Blending with Ecoflex
Metabolix, USA	Several PHA	Unknown	1980s to present	Packaging
Tepha, USA	Several PHA	PHA medical implants	1990s to present	Medical bio-implants
ADM, USA (with Metabolix)	Several PHA	50 000	2005 to present	Raw materials
P&G, USA	Several PHA	Contract manufacture	1980s to 2005	Packaging
Monsanto, USA	PHB, PHBV	Plant PHA production	1990s	Raw materials
Meredian, USA	Several PHA	10 000	2007 to present	Raw materials
Kaneka, Japan (with P&G)	Several PHA	Unknown	1990s to present	Packaging
Mitsubishi, Japan	PHB	10	1990s	Packaging
Biocycles, Brazil	PHB	100	1990s to present	Raw materials
Bio-On, Italy	PHA (unclear)	10 000	2008 to present	Raw materials
Zhejiang Tian An, China	PHBV	2000	1990s to present	Raw materials
Jiangmen Biotech Ctr, China	PHBHHx	Unknown	1990s	Raw materials
Yikeman, Shandong, China	PHA (unclear)	3000	2008 to present	Raw materials
Tianjin Northern Food, China	PHB	Pilot scale	1990s	Raw materials
Shantou Lianyi Biotech, China	Several PHA	Pilot scale	1990s to 2005	Packaging and medical
Jiang Su Nan Tian, China	PHB	Pilot scale	1990s to present	Raw materials
Shenzhen O'Bioer, China	Several PHA	Unknown	2004 to present	Unclear
Tianjin Green Bio-Science (+DSM)	P3HB4HB	10 000	2004 to present	Raw materials & packaging
Shandong Lukang, China	Several PHA	Pilot scale	2005 to present	Raw materials & medical

 Table 1
 Worldwide PHA producing and researching companies

First generation ethanol (1G) Currently produced from sugar or starch-based raw materials 1st generation PHA

Second generation ethanol (2G)

the second and

Over 40,000,000 tons bagasse and sugarcane leaves per season source UNICA

Releasing sugars from bagasse

Chemical or enzymatic hydrolysisSugar mixtures available for fermentation

Glucose,xylose,Arabinose

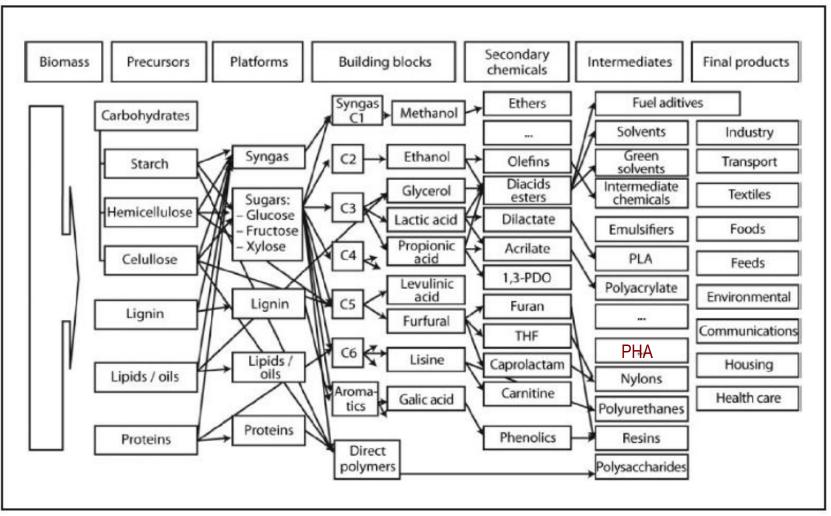
•Ethanologenic yeasts are unable to ferment xylose efficiently

Scenario in Brazil Ethanol 2G from ligno & hemicellulose

Xylose & arabinose available in large amounts
Perspective 10⁷ ton/year of C5 available*
Use of xylose to generate ethanol and other products

Pradella, 2012, Pereira et al., 2013

PRIBOP CYTED-IBEROAMERICAN BIOPLASTIC NETWORK


- Sugarcane is an enviromentally sustainable feedstock for bioplastics
- Integration do sugar and ethanol mills

- Green plastics
- PHA
- PLA
- Others

Biorefinery

Kamm et al., 2006, Franco & Garzón In: Cortez, 2010

Biorefinery Ethanol and sugar mills

Current

- Include a number of processes already used since 19th century
- Some processes already integrated

Challenges

- Integration of different technologies
 - Metabolic engineering
 - Full knowledge of the raw material (biomass)
 - Addition of new products (intermediates and final)
- Evaluation of social and environmental impacts

Bottlenecks/obstacles

Ethanol 1G

- The potential of ethanol 1G is far from being exhausted
- Productivity gains in the same cultivated area (yield/ha yield/sugarcane ton) – new varieties, GMOs
- Geographical expansion (other areas and other countries)

Ethanol 2G & biorefineries

- Hydrolysis of lignocellulose & hemicellulose to release sugars: toxic compounds are also released
- Development of (micro) organisms and processes to transform sugars into bioproducts

Contributions to the process

J Ind Microbiol Biotechnol (2004) 31: 245-254 DOI 10.1007/s10295-004-0136-7

ORIGINAL PAPER

L. F. Silva · M. K. Taciro · M. E. Michelin Ramos J. M. Carter · J. G. C. Pradella · J. G. C. Gomez

Poly-3-hydroxybutyrate (P3HB) production by bacteria from xylose, glucose and sugarcane bagasse hydrolysate

Table 5 Comparison of the present data with data reported in the literature about P3HB production from cellulose hydrolysates or sugars obtained from the hydrolysis of these materials. *CS* Cotton seed hydrolysate, *SH* soybean hydrolysate, μ_{Xrmax} maximum

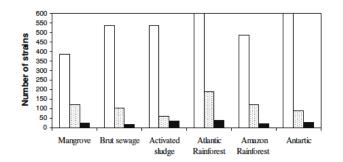
specific growth rate of residual cells (non-polymer material), μ_{Pmax} maximum specific polymer accumulation rate, P_{P3HB} polymer productivity, $Y_{P3HB/S}$ polymer yield from the carbon source

Strain	Carbon source	CDW (g 1 ⁻¹)	P3HB (%)	μ_{Xrrmax} (h ⁻¹)	μ_{Pmax} (h ⁻¹)	$Y_{P3HB/S}$ (g g ⁻¹)	${P_{P3HB} \choose g 1^{-1} h^{-1}}$	Reference
Pseudomonas pseudoflava ATCC 33668	Glucose	3.5	22.8	0.58	0.11	0.04	0.080	[2]
P. pseudoflava ATCC 33668	Xylose	4.0	27.5	0.13	0.03	0.04	0.031	[2]
B. cepacia ATCC 17759	Xylose	7.5	45	0.22	0.07	0.11	0.10	[20]
B. cepacia	Xylose		48.8	-	-	0.11	-	[30]
Escherichia coli TG1 (pSYL107) ^a	Xylose	4.75	35.8	-	-	0.097	0.028	[12]
E. coli r TG1 (pSYL107) ^a	Xylose + CSH	3.76	64.0	-	-	0.188	0.040	[12]
E. coli TG1 (pSYL107) ^a	Xylose + SH	5.95	72-0	-	-	0.226	0.070	[12]
B. sacchari IPT 101	Sugarcane bagasse hydrolysate	4.4	62	0.24	0.16	0.39	0.11	Present paper
B. cepacia IPT 048	Sugarcane bagasse hydrolysate	4.4	53	0.36	0.08	0.29	0.09	Present paper
B. sacchari IPT 101	Xylose + glucose	60	58	0.25	0.03	0.22	0.47	Present paper
B. cepacia IPT 048	Xylose + glucose	57	57	0.28	0.06	0.19	0.46	Present paper

^aRecombinant strain

High PHB content

Low productivity


Detoxification of hydrolysate needed

World J Microbiol Biotechnol (2009) 25:1751–1756 DOI 10.1007/s11274-009-0072-9

ORIGINAL PAPER

Screening of bacteria to produce polyhydroxyalkanoates from xylose

Mateus Schreiner Garcez Lopes · Rafael Costa Santos Rocha Sandra Patricia Zanotto · José Gregório Cabrera Gomez · Luiziana Ferreira da Silva

Cloning and overexpression of the xylose isomerase gene from *Burkholderia sacchari* and production of polyhydroxybutyrate from xylose

Can. J. Microbiol. 55: 1012-1015 (2009)

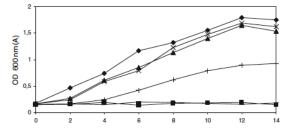

Mateus Schreiner Garcez Lopes, José Gregório Cabrera Gomez, and Luiziana Ferreira Silva

Table 1. Specific xylose isomerase activities (assayed as described in Shamanna and Sanderson (1979)) in wild-type *Burkholderia sacchari* IPT101, *B. sacchari* IPT101 harboring pBBR1MCS-2 used as control, and *B. sacchari* IPT101 harboring pBBR1xylA (LFM900).

Strain	Activity (U·mg protein-1)
B. sacchari IPT101	1.46
B. sacchari:: pBBR1MCS-2	1.32
B. sacchari pBBR1xylA	2.44

Note: One unit of isomerase activity is defined as the amount of crude enzyme required to produce 1 μ mol product·min⁻¹.

Fig. 2. Growth experiments in mineral media (based on Rocha et al. 2008) with xylose as carbon source (2 g·L⁻¹): \blacklozenge , Burkholderia sacchari IPT101 wild type; ×, B. sacchari harboring pBBR1MCS-2 used as control; \blacklozenge , B. sacchari LFM900 harboring pBBR1MCS-2 with xylA cloned (pBBR1xylA); \blacksquare , B. sacchari xyl⁻ IPT536, IPT101 mutant unable to grown in xylose; -, B. sacchari xyl⁻ IPT536 harboring pBBR1MCS-2 used as control; +, B. sacchari xyl⁻ IPT536 harboring pBBR1xylA.

Performance in sugar mixtures (bagasse hydrolysate main sugars)

Strain	Sugar	CDW (g l ⁻¹)	Sugar (g l ⁻¹)	PHB (%)	Time (h)	Y _{HB} (g g ⁻¹)	P _{HB} (g l- ¹ h ⁻¹)
Bu.sacchari	Glu	6.37	14.07	63.14	36	0.29	0.11
Busacchari	Xyl	5.53	12,37	58.07	48	0.26	0.07
Bu.sacchari	Glu+Xyl	5.82	12.42	53.42	36	0.25	0.09
Bu.sacchari	Glu+Xyl+Ara	5.72	12.26	47.49 💙	36	0.22	0.08
- MA 3.3	Glu	5.76	14.58	62.15	36	0.25	0.10
MA 3.3	Xyl	5.54	14.97	64.36	60	0.24	0.06
MA 3.3	Glu+Xyl	3.86	10.19	38.16	24	0.14	0.06
MA 3.3	Glu+Xyl+Ara	3.99	14.50	39.89 💙	48	0.11	0.03

Cell dry weight (CDW), PHB content of the cell dry weight (%PHB) PHB yield from carbon source (YPHB/C), and PHB volumetric productivity (PPHB)

Bacillus megaterium

- P_{PHB} is 40% lower in xylose than in glucose

-In sugar mixtures parameters were lower: %PHB, $Y_{PHB/C} e P_{PHB}$.

J Mol Microbiol Biotechnol 2011;20:63–69 DOI: 10.1159/000324502 Lopes et al.

PHB Biosynthesis in Catabolite Repression Mutant of *Burkholderia sacchari*

Mateus Schreiner Garcez Lopes • Guillermo Gosset • Rafael Costa Santos Rocha • José Gregório Cabrera Gomez • Luiziana Ferreira da Silva

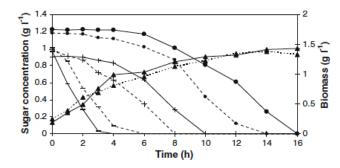
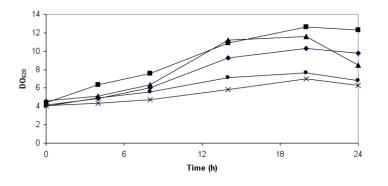


Fig. 3 Growth experiments in triple sugar mixtures with wild type *B.* sacchari IPT101 (solid line) and *B.* sacchari LFM828 PTS⁻ glucose⁺ (dotted line): (filled triangle) biomass, (minus) glucose, (plus) arabinose, and (filled circle) xylose

Improving simultaneous consumption of different sugars from bagasse J Ind Microbiol Biotechnol (2014) 41:1353–1363 DOI 10.1007/s10295-014-1485-5

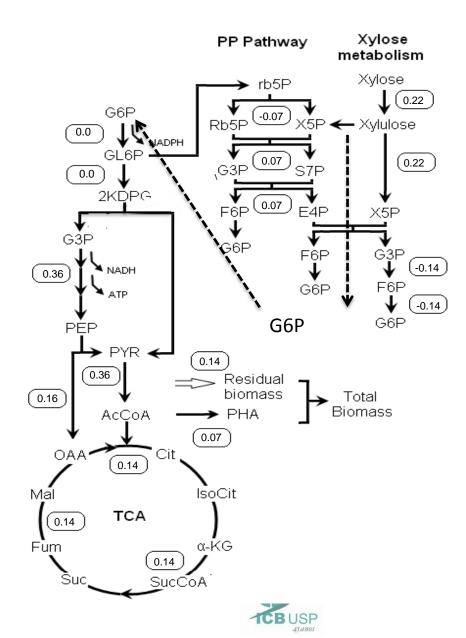
BIOENERGY/BIOFUELS/BIOCHEMICALS

Polyhydroxyalkanoate biosynthesis and simultaneous remotion of organic inhibitors from sugarcane bagasse hydrolysate by *Burkholderia* sp.


Mateus Schreiner Garcez Lopes • José Gregório Cabrera Gomez • Marilda Keico Taciro • Thatiane Teixeira Mendonça • Luiziana Ferreira Silva

Growth experiment with F24 in mineral media with xylose (10 g l⁻¹) and individual compounds: (**•**) 2.5 g l⁻¹ of acetic acid, (**•**) 1.25 g l⁻¹ of formic acid, (**•**) control experiment only with xylose, (**•**) 0.5 g l⁻¹ of HMF, and (x) 0.5 g l⁻¹ of furfural.

Isolate F24 (*Burkholderia* sp) can use toxic compounds from sugarcane hydrolysate

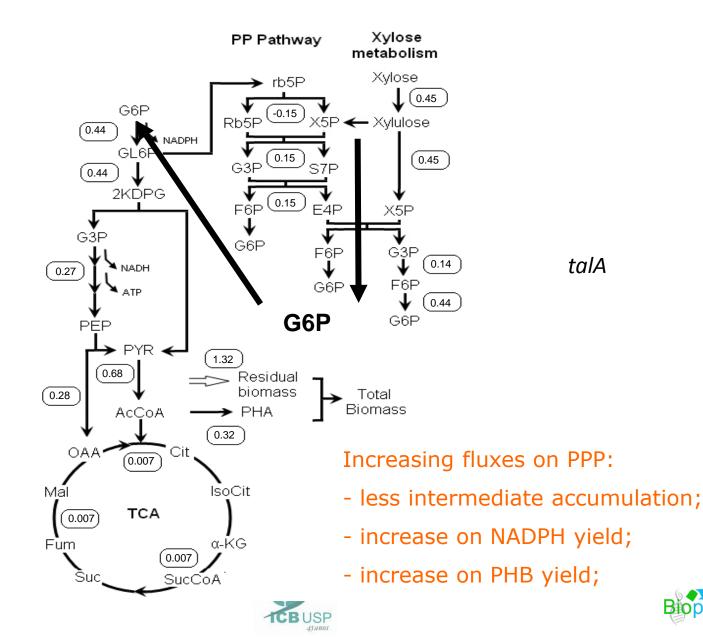

Seed	Formic acid	Acetic acid	Furfural	HMF	Xylose	Cell density	%PHA
0	1.57	1.97	0.46	0.15	17.65	0	0
0.5	0.14	0.43	0.13	0.03	11.18	2.3	37.45
1.0	0.02	0.02	0.17	0.03	12.13	2.89	42.15
1.5	0.03	0.14	0.21	0.01	5.23	3.75	42.15
3.2	0.07	0.00	0.04	0.00	4.78	7.18	32.35
6.5	0.00	0.00	0.07	0.02	2.31	10.48	35.72

Effect of the inoculum size (g l⁻¹) on utilization of hydrolysates (g l⁻¹), cell growth (g l⁻¹) and PHA biosynthesis (% of PHA of the cell dry weight) in hydrolysate medium after 48 hours

Fluxes leading to: $Y_{XyI/HB} = 0.25 \text{ g s}^{-1}$

Metabolic flux analysis as a tool for bacterial improvement

NADPH needed for PHA production in *B sacchari*



Fluxes resulting on: $Y_{XyI/HB} = 0.41 \text{ g g}^{-1}$

Metabolic flux analysis as a tool for bacterial improvement

Laboratório de

ICB - USP

Metabolic engineering of *Burkholderia saccha*ri for improved production of biobased products from xylose

Linda Guaman, M. Schreiner, J. Cabrera, L.F. da Silva, M. Keico

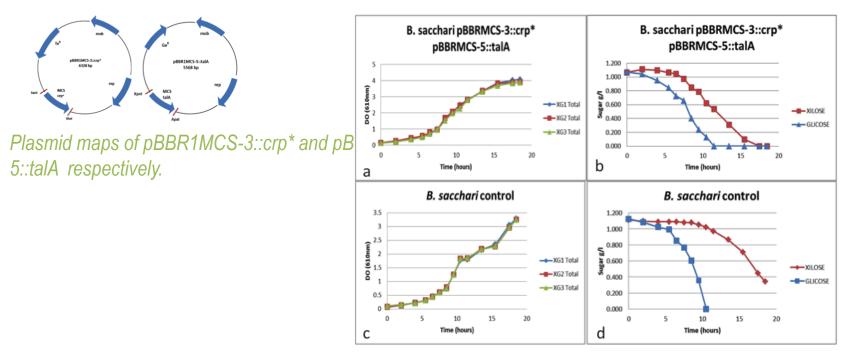


Fig 6. a-c: Bacterial growth curve. b-d: Sugar compsumption

15% increase μ_{max} 35% reduction on lag phase simultaneous consumption of xylose and glucose 40% productivity CDW.

Metabolic engineering of *Burkholderia saccha*ri for improved production of biobased products from xylose

Linda Guaman, M. Schreiner, J. Cabrera, L.F. da Silva, M. Keico

Strain	Carbon	РНА	CDW	%PHB	PHB	Time (h)	Reference
	Source	Composition	(g l ⁻¹)		g/l		
B. sacchari IPT101	Xilose	PHB	4.16	58.07	2.42	48h	Lopes et al., 2009
B. sacchari IPT101	Glicose e xilose	PHB	5.82	53.42	3.11	48h	Lopes et al., 2009
B. sacchari LFM 1103 [#]	Xilose	PHB	7.1	53.71	3.81	48h	This work
B. sacchari LFM 1103 [#]	Glicose e xilose	PHB	7	60.12	4.21	48h	This work
<i>B. sacchari</i> LFM 1105 [¥]	Xilose	PHB	4.12	55.07	2.27	48h	This work
<i>B. sacchari</i> LFM 1105 [¥]	Glicose e xilose	PHB	4.81	52.83	2.54	48h	This work

recombinants harboring *crp** and *talA* increased polymer accumulation

Expanding the spectrum of carbohydrate utilization by *Pseudomonas* sp. LFM046: Xylose utilization E.R. Oliveira, L.P. Guamán, Luiziana F. Da Silva, J.G. Gomez, M.K. Taciro

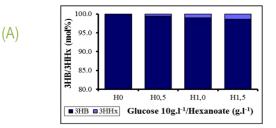
> Introducing the ability to consume xylose and sugars from biomass to other industrially interesting bacteria

> > 1 2 3

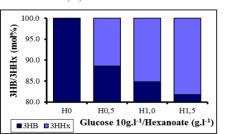
1 2 3

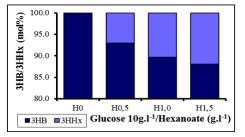
Journal of Applied Microbiology ISSN 1364-5072

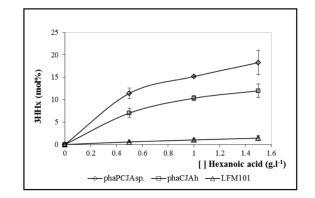
ORIGINAL ARTICLE


Exploring the potential of Burkholderia sacchari to produce polyhydroxyalkanoates

T.T. Mendonça¹, J.G.C. Gomez¹, E. Buffoni¹, R.J. Sánchez Rodriguez², J. Schripsema³, M.S.G. Lopes¹ and L.F. Silva¹


Modulation of monomer composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) P(3HB-co-3HHx) produced by Burkholderia sacchari T.T. Mendonça, R. Tavares, J.G.C. Gomez, L.G. Cespedes, M.K. Taciro, Luiziana F. Silva


Figure 3 – Composition of PHA accumulated from glucose (10 g.l⁻¹) and hexanoic acid (0-1.5 g.l⁻¹) by *B. sacchari* wild type (A) and recombinants (B) (*phaPCJ* - left - and *phaCJ* - right)

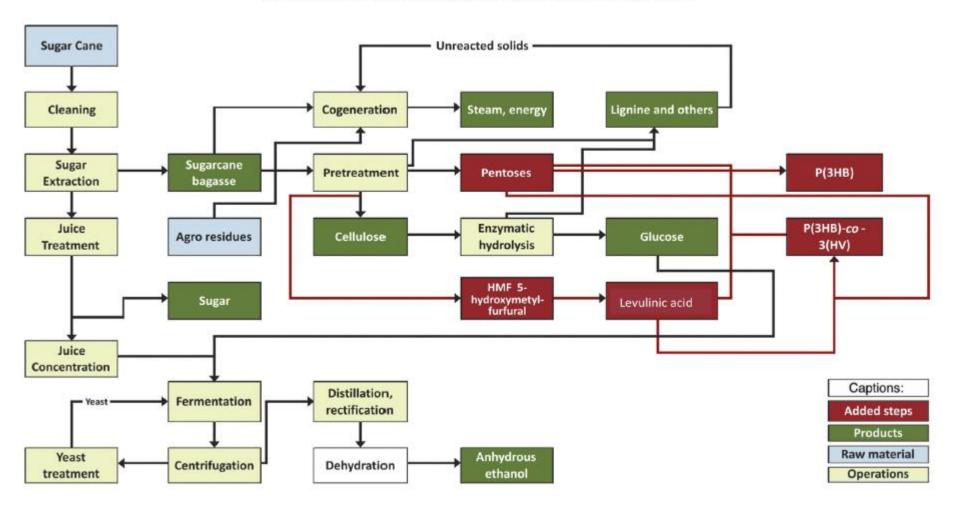

Figure 4 – Correlation of hexanoic acid concentration provided and 3HHx molar fraction obtained in experiments with *B. sacchari* strains (wild type and recombinants)

(B)

Other approaches

Integration of bagasse enzymatic hydrolysis to the biorefinery

Bioenerg. Res. DOI 10.1007/s12155-013-9340-5


Cellulase On-Site Production from Sugar Cane Bagasse Using *Penicillium echinulatum*

Beatriz Merchel Piovesan Pereira · Thabata Maria Alvarez · Priscila da Silva Delabona · Aldo José Pinheiro Dillon · Fabio Márcio Squina · José Geraldo da Cruz Pradella

C Springer Science+Business Media New York 2013

Biopolymer production integrated to a sugar and ethanol mill

L.F. Silva et al. / International Journal of Biological Macromolecules 71 (2014) 2-7

Perspectives and challenges

- The production of lignocellulosic hydrolysates of sugarcane bagasse, usable by microorganisms, is still a challenge, as well as obtaining ethanologenic yeast or other microorganisms efficient in transforming the resulting hydrolysate in commercially attractive products.
- Important issues
 - Use of other residues as raw materials
 - Other biorefinery models
 - Interdisiplinaty work
 - Interaction with industries
 - discussion forums involving different areas
 - Government policies and support

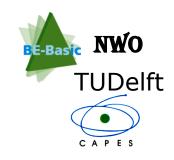
Team and Financial Support

Luiziana F. Silva lukneif@usp.br

J.Gregório C. Gomez Marilda Keico Taciro Karel Olavarria Gamez Thatiane T. Mendonca Gabriela C. Lozano Linda P. Guaman Bautista Lucas Garbini Cespedes Diana Carolina Tusso Pizon Bernardo Ferreira Camilo Cesar W. Guzman Moreno Rafael Nahat Carlos Farjardo Thandara Garcia Ravelli Juliano Cherix Edmar Ramos de Oliveira Filho Juan Camilo Roncalo Aline Carolina C. Lemos Alexandre A. Alves Aelson L. Santos

Karen L. Almeida Odalys Rodriguez Gamez Arelis Abalos Rodriguez Jhoanne Hansen Gisele F. Bueno

Amanda B. Flora


Galo A. C. Le Roux (EP-USP) Carlos A. M. Riascos (EP-USP)

Paulo Alexandrino (André Fujita) Juliana Cardinali Rezende

Ruben Sanchez (UENF) Niels van Stralen (W2C)

Andreas K. Gombert (UNICAMP) Walter M. van Gulik (TU Delft) Aljoscha Wahl (TU Delft) Reza Maleki Seifar (TU Delft) J. J. (Sef) Heijnen (TU Delft)

